Toward an astrometric mission to detect and characterize nearby habitable planetary systems

Fabien Malbet Institut for Planetology and Astrophysics in Grenoble

OSUG

Ist ITA - MPIA/Heidelberg - IPAG Colloquium "Signs of planetary formation and evolution" 8-9 Oct 2012 Grenoble (France)

Mission submitted to ESA Cosmic Mission call for M3 in December 2010 by 70 scientists (full list at http://neat.obs.ujf-grenoble.fr)

Astrometry desired accuracy

 $A = 0.33 (a_P / I AU) . (M_P / I M_E) . (M_* / I M_S)^{-1} . (d / I0 pc)^{-1}$ µas

Motion of the Sun

Sun @ 10pc	Giants planets	Terrestrial planets		
M _P (M _E)	300	I		
a _P (AU)	5	I		
P (yr)	11	I		
A (in µas)	495	0.3		

Astrometry desired accuracy

 $A = 0.33 (a_P / I AU) . (M_P / I M_E) . (M_* / I M_S)^{-1} . (d / I0 pc)^{-1}$ µas

Sun @ 10pc	Giants planets	l'errestrial planets		
M _P (M _E)	300	I		
a _P (AU)	5	I		
P (yr)	11			
A (in µas)	495	0.3		

Astrometry measures $P, a_P, i, e, \omega, \Omega, T_0 \implies M_P$

Astrometry desired accuracy

 $A = 0.33 (a_P / I AU) . (M_P / I M_E) . (M_* / I M_S)^{-1} . (d / 10 pc)^{-1}$ µas

Sun @ 10pc	Giants planets	Terrestrial planets		
M _P (M _E)	300	I		
a _P (AU)	5	I		
P (yr)		I		
A (in µas)	495	0.3		

In order to detect a IM_{Earth} planet @10pc, one needs to detect signal $\geq 0.3 \pm 0.05 \ \mu as$

Which technique can search planetary systems around nearby solar-type stars ?

Credits: J. Lomberg

What has been detected thanks to RV around the nearby FGK stars?

Only 10% of nearby stars have known exoplanets so far !

What planetary components are we missing?

Planetary mass distribution of the 42 closest FGK stars

Statistics on exoplanets around the 42 nearby FGK stars

Parameter space

Parameter space

Astrometrical signal from the Sun located at

Astrometric jitter of a solar analog at 10 pc in the equatorial dimension 0.052 µas - negligible compared to the Earth signal 0.3 µas

 \Rightarrow Astrometry is working with stars x5 more active than the Sun

Makarov et al. (2009, ApJ 707, L73); Lagrange, Desort, & Meunier (2010, A&A 512, A38) Daily variations of the solar total irradiance (top panel), photocenter position in the east-west dimension (mid panel) and south-north dimension (lower panel) during 1996 – 2007

Stellar activity of FGK nearby stars

 \Rightarrow 98% of nearby FGK stars are less than x5 more active than the Sun

Why astrometry for nearby systems?

- Nearby systems are interesting because they can provide enough photons for characterization by direct imaging
- Transits and microlensing are probing too distant systems or with a very small probability
- Imaging works best at large distance and large planets
- Even if RV will discover Earth-like planets around some very quiet stars, RV cannot make a complete census within 20 pc
- Understanding planet formation requires to detect low-mass planets in planetary systems
- 0.3µas astrometry is challenging but within reach

Why astrometry for nearby systems?

- Nearby systems are interesting because they can provide enough photons for characterization by direct imaging
- Transits and microlensing are probing too distant systems or with a very small probability
- Imaging works best at large distance and large planets
- Even if RV will discover Earth-like planets around some very quiet stars, RV cannot make a complete census within 20 pc
- Understanding planet formation requires to detect low-mass planets in planetary systems
- 0.3µas astrometry is challenging but within reach

There are all ingredients for a space astrometry mission **NEAT** (Nearby Earth Astrometry Telescope)

NEAT scientific objectives

The prime goal of NEAT is:

- to detect and fully characterize planetary systems
- with all components down to the Earth mass
- orbiting bright **solar-type stars** (FGK, $V \le 9$)
- in the solar neighborhood (d < 20 pc)</p>

with planetary architectures:

- similar to that of our Solar System
- or any one with Earth mass planets

Key capability: detecting Earth-mass planets in the Habitable Zone

NEAT scientific cases

This mission will answer the following questions:

➡ What are the dynamical interactions between giant and telluric planets in a large variety of systems?

➡ What are the detailed processes involved in planet formation as revealed by their present configuration?

 \Rightarrow What are the distributions of architectures of planetary systems in our neighborhood up to ~20 pc?

➡ What are the masses, and addresses, of telluric planets that are candidates for future direct detection and spectroscopic characterization missions?

10.0

NEAT Spacecraft

- Mission orbit: L2 large Lissajous
- 2 satellites flying in formation
- 20,000 reconfigurations

Reconfiguration time: 30mn

NEAT Spacecraft

- Mission orbit: L2 large Lissajous
- 2 satellites flying in formation
- 20,000 reconfigurations

 $\overleftarrow{}$

Reconfiguration time: 30mn

......

Laboratory testbeds

JPL testbed

A scalable concept

Mission name	Mirror diameter	Focal length	Field of view diameter	Focal Plane size	Ref. star mean magnitude	DMA in 1h	# targets for a given mass limit		
	(m)	(m)	(deg)	(cm)	(R mag)	(µas)	0.5 <i>M</i> _⊕	1 <i>M</i> _€	5 M⊕
NEAT plus	1.2	50	0.45	40	11.5	0.7	7	100	200
NEAT	1.0	40	0.56	40	11	0.8	5	70	200
NEAT light	0.8	30	0.71	35	10.5	1.0	4	50	200
EXAM	0.6	20	0.85	30	10.1	1.4	2	35	200
							<i>1M</i> ⊕	10 M _€	50 M _€
µNEAT (*)	0.3	12	0.6	15	11	10.2	2	25	200
DMA = Differential astrometric Measurement Accuracy (rms); (*) centroiding requirement relaxed to 4e-5									

Fully Deployed Spacecraft

Current status

Science highly ranked by ESA Astrophysical Working Group at the M3 evaluation.

What next?

- Lab demonstration under progress to demonstrate 5 µpixel centroiding
- Trade-off between Formation Flying vs deployable boom
- Science simulations: double blind test
- Extension of science cases: young stars, M dwarfs, NEO, ...

All information: <u>http://neat.obs.ujf-grenoble.fr</u>

COSMIC Vision Plan 2015-2025: Theme 1, Section 1.2

"On a longer timescale, a complete census of all Earth-sized planets within 100 pc of the Sun would be highly desirable. Building on Gaia's expected contribution on larger planets, this could be achieved with a high-precision terrestrial planet astrometric surveyor."

We have designed NEAT to be this astrometric surveyor.