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Mission submitted to ESA Cosmic Mission call for M3 
in December 2010 by 70 scientists 

(full list at http://neat.obs.ujf-grenoble.fr)
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Astrometry desired accuracy

In order to detect a 1MEarth  planet @10pc, 
one needs to detect signal ≥0.3±0.05 μas
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Which technique can search planetary 
systems around nearby solar-type stars ?
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What has been detected thanks to RV 
around the nearby FGK stars?
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What planetary components are we missing?
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Parameter space
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Parameter space
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Astrometrical 
signal from the 
Sun located at 

Daily variations of the solar total irradiance (top panel), 
photocenter position in the east-west dimension (mid panel) and 

south-north dimension (lower panel) during 1996 -- 2007

Makarov et al. (2009, ApJ 707, L73);      
Lagrange, Desort, & Meunier (2010, A&A 512, A38)

Astrometric jitter of a solar analog at 10 pc in the equatorial dimension 
0.052 μas  -  negligible compared to the Earth signal 0.3 μas 

⇒ Astrometry is working with stars x5 more active than the Sun



Stellar activity of FGK nearby stars
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Why astrometry for nearby systems?
- Nearby systems are interesting because they can provide 

enough photons for characterization by direct imaging

- Transits and microlensing are probing too distant systems or 
with a very small probability

- Imaging works best at large distance and large planets

- Even if RV will discover Earth-like planets around some very 
quiet stars, RV cannot make a complete census within 20 pc

- Understanding planet formation requires to detect low-mass 
planets in planetary systems

- 0.3µas astrometry is challenging but within reach 
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- Understanding planet formation requires to detect low-mass 
planets in planetary systems

- 0.3µas astrometry is challenging but within reach 

There are all ingredients for a space astrometry mission 

⇒ NEAT (Nearby Earth Astrometry Telescope)
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NEAT scientific objectives

The prime goal of NEAT is: 

‣ to detect and fully characterize planetary systems 

‣ with all components down to the Earth mass 

‣ orbiting bright solar-type stars (FGK, V ≤ 9)

‣ in the solar neighborhood (d < 20 pc)

with planetary architectures:
- similar to that of our Solar System 

- or any one with Earth mass planets

➥ Key capability: detecting Earth-mass planets in the Habitable Zone

15



NEAT scientific cases

This mission will answer the following questions:

➡ What are the dynamical interactions between giant and 
telluric planets in a large variety of systems?

➡ What are the detailed processes involved in planet 
formation as revealed by their present configuration?

➡ What are the distributions of architectures of planetary 
systems in our neighborhood up to ~20 pc?

➡ What are the masses, and addresses, of telluric planets 
that are candidates for future direct detection and 
spectroscopic characterization missions?

16



Examples of measurements
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NEAT concept
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NEAT Spacecraft

Launch 
configuration 

- Mission orbit: L2 large Lissajous

- 2 satellites flying in formation

- 20,000 reconfigurations

- Reconfiguration time: 30mn

PRISMA heritage
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Laboratory testbeds

 

 

a ULE bench with a collimator parabola glued to it. The parabola was masked to allow a 14 mm ‘primary’ mirror to be 
defined. A bundle consisting of 7 closely packed fibers was mounted with a defocus in such a way to create an image at 
an effective focal length of 1.1 m and an F# of about 80. The middle image, top row, shows three of the seven stars 
created this way. The sampling of the PSF’s, defined as the number of pixels per Ȝ f / D, was 2.55. Later on in the 
experiment, the aperture diameter was reduced to allow better sampling. Also mounted on the ULE block was a low 
expansion ‘metrology block’, on which was mounted six metrology fibers with their tips pointed at the detector. These 
would be illuminated pairwise to create various fringes.  

 

Figure 6: MCT test setup in the SIM vacuum chamber at JPL. Shown are the chamber (top left), the test setup 
(bottom), the ULE low-expansion optical bench (top right), and a single frame from the CCD with three stars and 
metrology fringes (top middle). In the bottom picture the test setup can be seen, with the camera on the left.  

Figure 7 shows the metrology block and the imaging parabola during the installation phase. As highlighted by the circles 
in the picture, 3 horizontal and 3 vertical fibers were mounted on the block. The spacing between the fibers was designed 
to create a range of fringe spacings. On the right side of the figure can be seen 15 fringe patterns observed as each 
unique pair of fibers was turned on. 

A more detailed look at the metrology system is offered by Figure 8. Acousto-optic Modulators (AOM’s) are used to 
switch on laser light to a pair of optical fibers, frequency shifting the light to one of the two fibers by a few Hz relative to 
the other. In general, an optical fiber projects laser light at divergent cone of about 10 degrees (deg) in diameter. On the 
CCD, the light from the two illuminated fibers interferes and, because of the frequency offset, the fringes “travel” across 
the CCD surface. The CCD in the experiment could be read at up to 50 frames per second (fps). If the applied 
(“heterodyne”) frequency offset is chosen at 5 Hz, then the output of any given pixel is a discretely sampled, 5 Hz sine 
wave with 10 samples per cycle (assuming 50 fps readout). If we compare two adjacent pixels we see two sine waves 
with a known phase shift. If the fringe spacing is, for example, 4 pixels, then adjacent pixels will have a O/4 (i.e. 90 deg) 
phase shift. In other words, the measured phase difference between any two pixels is directly proportional to the distance 
between the pixels along the direction of the traveling fringe. By illuminating pairs of fibers with different relative 
positions, we can produce fringes traveling in different directions on the CCD surface and hence derive the relative 

Proc. of SPIE Vol. 8151  81510W-6
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Figure 9:  MCT test results showing the flat field response (left) and effective pixel location deviations from a 
regular grid along row (middle) and column (right) directions.  

 

Figure 10: Metrology of pixel locations for a 10x10 zone achieves 20 Ppix accuracy in 25 sec (left). Also, the 
measured distance between the centroids of two artificial stars dips down to 30  Ppix  after 200 seconds (right) 
under conditions where the individual centroids are moving by about 10X as much.  

5. SUMMARY AND CONCLUSION  
Micro-pixel centroiding holds promise as the enabling technology for low cost micro-arcsecond astrometry and 
particularly the search for Earth-mass planets in the habitable zones of nearby sun-like stars. We have developed an 
approach that uses precision metrology to calibrate the otherwise intractable focal plane systematic errors that would be 
encountered in getting down to micro-arcseconds in astrometric accuracy. We have checked the algorithmic aspects of 
our approach using simulations and begun testing the remaining aspects using a small testbed called MCT.  

Using simulation we found that our image position sensing algorithm is capable of 4 ȝpix accuracy in the presence of 
wavefront errors and displacements up to half a pixel. With the MCT testbed, we were able to calibrate the focal plane 
with a pixel-to-pixel differential measurement precision of less than 20 ȝpix after 25 seconds of integration. Also, we 
demonstrated star-to-star differential measurement precision of less than 30 ȝpix after 200 seconds of integration. The 
next set of tests will aim at systematic errors and aim to show accuracy at the few ȝpix level by measuring the post-
calibration inter-star distance repeatability under conditions where the actual distance is effectively constant.  

Proc. of SPIE Vol. 8151  81510W-8
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A scalable concept

EXAM (NASA)

21

Shao et al.
µNEAT (ESA small mission)
Brandeker et al.

(m) (m) (deg) (cm) (R mag) (µas) 0.5M⊕ 1 M⊕ 5 M⊕

NEAT plus 1.2 50 0.45 40 11.5 0.7 7 100 200
NEAT 1.0 40 0.56 40 11 0.8 5 70 200
NEAT light 0.8 30 0.71 35 10.5 1.0 4 50 200

EXAM 0.6 20 0.85 30 10.1 1.4 2 35 200

1M⊕ 10 M⊕ 50 M⊕

µNEAT (*) 0.3 12 0.6 15 11 10.2 2 25 200

# targets for a given mass limit

DMA = Differential astrometric Measurement Accuracy (rms);     (*) centroiding requirement relaxed to 4e-5

Mission 
name

Mirror 
diameter Focal length Field of view 

diameter
Focal Plane 

size

Ref. star 
mean 

magnitude
DMA in 1h



Current status
➠ Science highly ranked by ESA Astrophysical Working 
Group at the M3 evaluation.

What next?
- Lab demonstration under progress to demonstrate 5 µpixel centroiding
- Trade-off between Formation Flying vs deployable boom
- Science simulations: double blind test
- Extension of science cases: young stars, M dwarfs, NEO, ...

All information: http://neat.obs.ujf-grenoble.fr

COSMIC Vision Plan 2015-2025: Theme 1, Section 1.2
‘‘ On a longer timescale, a complete census of all Earth-sized planets within 100 pc of the 

Sun would be highly desirable. Building on Gaia’s expected contribution on larger planets, this 
could be achieved with a high-precision terrestrial planet astrometric surveyor. ’’

We have designed NEAT to be this astrometric surveyor.
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