Toward an astrometric mission to detect and characterize nearby habitable planetary systems

Fabien Malbet
Institut for Planetology and Astrophysics in Grenoble

$$
\begin{aligned}
& \text { Ist ITA - MPIA/Heidelberg - IPAG Colloquium } \\
& \text { "Signs of planetary formation and evolution" } \\
& 8-9 \text { Oct } 2012 \text { Grenoble (France) }
\end{aligned}
$$

Mission submitted to ESA Cosmic Mission call for M3 in December 2010 by 70 scientists (full list at http://neat.obs.ujf-grenoble.fr)

Astrometry desired accuracy

$$
A=0.33(\mathrm{ap} / \mathrm{I} A U) \cdot\left(\mathrm{Mp}_{\mathrm{p}} / \mid \mathrm{M}_{\mathrm{E}}\right) \cdot\left(\mathrm{M}_{*} / \mid \mathrm{Ms}^{-1} \cdot(\mathrm{~d} / \| 0 \mathrm{pc})^{-1}\right. \text { uas }
$$

Sun @ IOpc	Giants planets	Terrestrial planets
$M_{P}\left(\mathrm{M}_{\mathrm{E}}\right)$	300	I
$\mathrm{ap}_{\mathrm{P}}(\mathrm{AU})$	5	I
$\mathrm{P}(\mathrm{yr})$	II	I
A (in uas)	495	0.3

> Astrometry measures
> $P, a_{P}, i, e, \omega, \Omega, T_{0} " \rightarrow M_{P}$

Astrometry desired accuracy

$$
A=0.33(\mathrm{ap} / \mid \mathrm{AU}) \cdot\left(\mathrm{M}_{\mathrm{p}} / \mid \mathrm{M}_{\mathrm{E}}\right) \cdot\left(\mathrm{M}_{*} / \mid \mathrm{M}_{\mathrm{s}}\right)^{-1} \cdot(\mathrm{~d} / \mid 0 \mathrm{pc})^{-1} \text { بas }
$$

Sun @ IOpc	Giants planets	Terrestrial planets
$\mathrm{MP}_{\mathrm{P}}\left(\mathrm{M}_{\mathrm{E}}\right)$	300	I
$\mathrm{ap}_{\mathrm{P}}(\mathrm{AU})$	5	I
P (yr)	II	I
A (in uas)	495	0.3

Astrometry desired accuracy

$$
A=0.33(\mathrm{ap} / \mathrm{I} A U) \cdot\left(\mathrm{Mp}_{\mathrm{p}} / \mid \mathrm{M}_{\mathrm{E}}\right) \cdot\left(\mathrm{M}_{*} / \mid \mathrm{Ms}\right)^{-1} \cdot(\mathrm{~d} / \| 0 \mathrm{pc})^{-1} \text { uas }
$$

Astrometry measures $P, a_{p}, i, e, \omega, \Omega, T_{o} \rightarrow M_{P}$

Sun @ IOpc	Giants planets	Terrestrial planets
$\mathrm{MP}_{\mathrm{P}}\left(\mathrm{M}_{\mathrm{E}}\right)$	300	I
$\mathrm{ap}_{\mathrm{P}}(\mathrm{AU})$	5	I
$\mathrm{P}(\mathrm{yr})$	II	I
A (in uas)	495	$\mathbf{0 . 3}$

In order to detect a I MEarth planet @10pc, one needs to detect signal $\geq 0.3 \pm 0.05 \mu$ as

Which technique can search planetary

 systems around nearby solar-type stars?

Which technique can search planetary systems around nearby solar-type stars?

Which technique can search planetary systems around nearby solar-type stars?

Which technique can search planetary systems around nearby solar-type stars?

What has been detected thanks to RV

 around the nearby FGK stars?Only 10\% of nearby stars have known exoplanets so far !

What planetary components are we missing?

Planetary mass distribution of the 42 closest FGK stars

Statistics on exoplanets around the 42 nearby FGK stars

Parameter space

Parameter space

Astrometrical signal from the Sun located at

 0.052μ as - negligible compared to the Earth signal 0.3μ as \Rightarrow Astrometry is working with stars $\times 5$ more active than the Sun

Daily variations of the solar total irradiance (top panel), photocenter position in the east-west dimension (mid panel) and south-north dimension (lower panel) during 1996-2007

Stellar activity of FGK nearby stars

$\Rightarrow 98 \%$ of nearby FGK stars are less than $\times 5$ more active than the Sun

Why astrometry for nearby systems?

- Nearby systems are interesting because they can provide enough photons for characterization by direct imaging
- Transits and microlensing are probing too distant systems or with a very small probability
- Imaging works best at large distance and large planets
- Even if RV will discover Earth-like planets around some very quiet stars, RV cannot make a complete census within 20 pc
- Understanding planet formation requires to detect low-mass planets in planetary systems
- 0.3μ as astrometry is challenging but within reach

Why astrometry for nearby systems?

- Nearby systems are interesting because they can provide enough photons for characterization by direct imaging
- Transits and microlensing are probing too distant systems or with a very small probability
- Imaging works best at large distance and large planets
- Even if RV will discover Earth-like planets around some very quiet stars, RV cannot make a complete census within 20 pc
- Understanding planet formation requires to detect low-mass planets in planetary systems
- 0.3μ as astrometry is challenging but within reach

There are all ingredients for a space astrometry mission
\Rightarrow NEAT (Nearby Earth Astrometry Telescope)

NEAT scientific objectives

The prime goal of NEAT is:

- to detect and fully characterize planetary systems
- with all components down to the Earth mass
- orbiting bright solar-type stars ($\mathrm{FGK}, \mathrm{V} \leq 9$)
- in the solar neighborhood (d < 20 pc)
with planetary architectures:
- similar to that of our Solar System
- or any one with Earth mass planets
\Leftrightarrow Key capability: detecting Earth-mass planets in the Habitable Zone

NEAT scientific cases

This mission will answer the following questions:
\Rightarrow What are the dynamical interactions between giant and telluric planets in a large variety of systems?
\Rightarrow What are the detailed processes involved in planet formation as revealed by their present configuration?
\Rightarrow What are the distributions of architectures of planetary systems in our neighborhood up to $\sim 20 \mathrm{pc}$?
\Rightarrow What are the masses, and addresses, of telluric planets that are candidates for future direct detection and spectroscopic characterization missions?

5 Earth mass planet at 1.8AU @ 5pc

5 Earth mass planet at 1.8AU @ 5pc

5 Earth mass planet at 1.8AU @ 5pc

Examples of measurements

1.5 Earth mass planet at 1.16AU @ 10pc

1.5 Earth mass planet at 1.16AU @ 10pc

Time since launch (years)
1.5 Earth mass planet at 1.16AU @ 10pc

Dynamical Young's interference fringes
(telescope axis tracker)

NEAT concept

Telescope spacecraft

Metrology

Telescope axis beam

I fixed CCD (target star)

I fixed CCD

8 movable CCDs (reference stars)

Focal plane

NEAT Spacecraft

- Mission orbit: L2 large Lissajous
- 2 satellites flying in formation
- 20,000 reconfigurations
- Reconfiguration time: 30mn

PRISMA heritage

NEAT Spacecraft

- Mission orbit: L2 large Lissajous
- 2 satellites flying in formation
- 20,000 reconfigurations
- Reconfiguration time: 30 mn

Laboratory testbeds

JPL testbed

A scalable concept

| Mission
 name | Mirror
 diameter | Focal length | Field of view
 diameter | Focal Plane
 size | Ref. star
 mean
 magnitude | DMA in 1h |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DMA $=$ Differential astrometric Measurement Accuracy (rms); $\quad(*)$ centroiding requirement relaxed to $4 \mathrm{e}-5$

EXAM (NASA)

View from Top Looking Down

Fully Deployed Spacecraft

μ NEAT (ESA small mission)

Current status

InIm Science highly ranked by ESA Astrophysical Working

 Group at the M3 evaluation.
What next?

- Lab demonstration under progress to demonstrate 5μ pixel centroiding
- Trade-off between Formation Flying vs deployable boom
- Science simulations: double blind test
- Extension of science cases: young stars, M dwarfs, NEO, ...

All information: http://neat.obs.ujf-grenoble.fr

$$
\text { COSMIC Vision Plan 2015-2025:Theme I, Section } 1.2
$$

" On a longer timescale, a complete census of all Earth-sized planets within 100 pc of the Sun would be highly desirable. Building on Gaia's expected contribution on larger planets, this could be achieved with a high-precision terrestrial planet astrometric surveyor."

We have designed NEAT to be this astrometric surveyor.

