SEARCH FOR PLANETS ORBITING M DWARFS STATUS AND PROSPECTS

M-DWARF FRIENDS @IPAG :
K. BONFILS, K. DELFOSSE, T. FORVEILLE, C. PERRIER, V. NEVES

WHAT DO EXOPLANET SEARCHES WANT ?

- UNDERSTAND PLANET FORMATION,
- PLANET PHYSICO-CHEMISTRY, AND
- ORIGIN OF LIFE

PRACTICALLY:

- MANY (DIVERSE) PLANETS
- HABITABLE EARTH-LIKE PLANETS

The shortest route to an exo-Life laboratory ?

OUTLINE

1. STATUS OF DISCOVERIES FOR M-DWARF PLANETS

2. OCCURRENCE OF PLANETS

3. SO... HOW MANY TARGETS ?
4. OK... BUT HOW ? (= capabiility)

Status

- diversity
- structure

OCCURRENCE OF M-DWARF PLANETS

 FROM HARPS

Planetary[BAPPS
Search AiPS
$\$ \mathrm{H}^{\mathrm{P}}$

Centro de Astrofisica
ULg.

$a[A U]$

Bonfils et al. (2012, A\&A in press) astro-ph/1111.5019B

Bonfils et al. (2012, A\&A in press) astro-ph/1111.5019B
(a direct measure)

(a direct measure)

$$
\eta_{\oplus}=\underset{\text { (a direct measure) }}{0.41_{-0}^{+0.54}}
$$

follow-up on previous radial-velocity results

(mostly for giant planets)

```
Endl et al. (2006, AJ 649, 436)
```


Fic. 2.- Probability function $P(f)$ for the true companion frequency f based on all our M dwarf data (HET, VLT, HJS, and Keck: $N=89$ stars) and $d=0$ detections. We find $f=0.46_{-0.46}^{+0.81}$ percent. The dashed lines delimit the area of 68% integrated probability ($\approx 1 \sigma$ Gaussian error).

```
Johnson et al. (2010, PASP)
```


Butler et al. (2006, AJ 649, 436)
$f=1.8 \pm 1.2 \%\left(>0.4 \mathrm{M}_{\mathrm{Jup}} ;<2.5 \mathrm{AU}\right)$
Cumming et al. (2008, PASP 120, 531)
> 1 Mjup are x5-10 times under abundant compared to Sun-like stars f~1\% (<5.4\% @ 2-sigma)

Johnson et al. (2007, AJ 670, 833)

Bonfils et al. (2007, A\&A 474, 293)
$f_{\text {hot Nept. }}>f_{\text {hot Jup }} \quad(>97 \%$ probability)

$$
f\left(M_{\star},[F e / H]\right)=0.07 \pm 0.01 \times\left(M_{\star} / M_{\odot}\right)^{1.0 \pm 0.3} \times 10^{1.2 \pm 0.2[F e / H]}
$$

Figure 15. Logarithm of the intrinsic frequencies as a function of stellar effective temperature after implementing the sensitivity corrections described in Section 4. The bins along the x-axis span $3000-4000 \mathrm{~K}, 4000-5000 \mathrm{~K}, 5000-6000 \mathrm{~K}$, and $6000-7000 \mathrm{~K}$, with each bin labeled by the central value.
small mass planets much more abundant around (early-)M dwarfs

$$
\begin{gathered}
\text { Gaidos et al. (2012, AJ 753, 90) } \\
f=0.36 \pm 0.08
\end{gathered}
$$

$$
\left(3600<T_{e f f}<4100 \mathrm{~K} ; P<50 \mathrm{~d} ; 2<R_{p}<32 \mathrm{R}_{\oplus}\right)
$$

photometry (transit)

The Occurrence Rate of Habitable Planets Around M Dwarfs from Kepler Courtney Dressing1, \& David Charbonneau ${ }^{1}$
${ }^{1}$ Harvard-Smithsonian Center for Astrophysics, "cdressing@cfa.harvard.edu

$f \sim 0.4$ habitable pl. / star

- Kepler results
- Mearth

MEarth
 and the occurrence rate of warm super-Earths and Neptunes orbiting mid-to-late M dwarfs

Zachory K. Berta¹, Jonathan Irwin ${ }^{1}$, David Charbonneau ${ }^{1}$, Christopher Burke ${ }^{2}$, Emilio Falco ${ }^{3}$

$2-4 \mathrm{R}_{\oplus} ; P<10 \mathrm{~d}$
μ-lensing

- Gould et al. (2010,ApJ 720, 1013)
- Cassan et al. (20I I...)

\[

\]

HOW MANY TARGETS ?

- consistent picture emerging from HARPS, Kepler, Mearth and μ-lensing surveys
- occurence of $1-10 \mathrm{M}_{\oplus}: f \sim 30-50 \% / \mathrm{d} \log P$
- ~40\% habitable planets
- one can use the statistical results to estimate :
- the number of planets for a given survey
- the number of targets required to significantly refined or change the number e.g. RV surveys put <1\% on hot-Jupiter occurrence Kepler found one (KOI-254b, Johnson et al. 2012)
$O(15) \mathrm{M}$ dwarfs to refine/change RV results
- for $P_{t r} \sim 2 \%$ one need $O(100)$ M dwarfs to expect one habitable transiting planets

HOW ?

PLATO / TESS

Predicted Science Yield from TESS Mission

SS

TESS vs. PLATO :

- more M-dwarf planets for TESS,
- more (habitable) Earth-size transiting GK stars for PLATO

Waiting for TESS / PLATO.

MEARTH

TRAPPIST - UCDTS

UltraCool Dwarfs Transit Survey

M6--L0

PI: Michaël Gillon (University of Liège, Belgium) michael.gillon@ulg.ac.be

UCDTS-41, M7V, V=16.6, J=9.8, M~0.09M ${ }_{\odot}, \mathrm{R} \sim 0.12 \mathrm{R}_{\odot}$, Teff~2660K, HZ from 4.3 to 7.4 d

Waiting for TESS / PLATO...

(BJD-2,455,993.0) $+/-\mathrm{N} * \mathrm{P}$ [day]

13064 - David Ehrenreich

Investigating the nature of GJ 3470b, the missing link between super-Earths and Neptunes

HOW MANY TARGETS ?

- consistent picture emerging from HARPS, Kepler, Mearth and μ-lensing surveys
- occurence of $1-10 \mathrm{M}_{\oplus}: f \sim 30-50 \% / \mathrm{d} \log P$
- ~40\% habitable planets
- one can use the statistical results to estimate :
- the number of planets for a given survey
- the number of targets required to significantly refined or change the number e.g. RV surveys put <1\% on hot-Jupiter occurrence Kepler found one (KOI-254b, Johnson et al. 2012)
$O(15) \mathrm{M}$ dwarfs to refine/change RV results
- for $P_{t r} \sim 2 \%$ one need $O(100)$ M dwarfs to expect one habitable transiting planets

HOW?

- space-borne transit survey (PLATO,TESS)
- ground based MEarth-like photometry (APACHE, TRAPPIST, ...)
- IR-spectro (SPIRou, CARMENES) coupled to photometric follow-up

