

A Radial-Velocity Survey for Terrestrial Planets in the Habitable Zones of M Dwarfs

Andreas Quirrenbach and the CARMENES Consortium

The 3.5m Telescope on Calar Alto (Southern Spain)

Goals and Plan for CARMENES

- Search for Earth-like "habitable" planets around low-mass stars (M-stars)
 - Number and formation mechanisms

- Properties and "habitability"

- Survey of 300 M stars
 - Simultaneously in visible light and nearinfrared
- 10 data points per star and year
 - 600 to 750 nights needed
 - Guaranteed in contract with CSIC and MPG

A "shortcut": M-type dwarfs

PHOENIX models

Relative Precision Achievable for M4 Star in Visible and near-IR

Stellar sample

Detectability simulations

Guiding Principles for Instrument

- Single-purpose instrument

 Design driven by survey requirements
- High stability for terrestrial planet detection
 - Thermal and mechanical stability
 - Stable input
 - No moving parts in spectrographs
- High resolution for slow rotators
- Large wavelength coverage for discrimination against intrinsic variability
- High efficiency for faint stars

NIR Spectrograph

VIS Spectrograph

Instrument Location

Properties of Spectrographs

- Optical spectrograph
 - -0.53 ... 1.05 μm, R = 82,000
 - Precision ~1 m/s
 - Vacuum tank, temperature stabilized
 - 4k x 4k deep depletion CCD detector
- Near-Infrared spectrograph
 - -0.95 ... 1.7 μm, R = 82,000
 - Vacuum tank, cooled to 140K, stabilized
 - Precision goal 1 m/s
 - Two 2k x 2k Hawaii 2.5 µm detectors

Spectrograph Layout

White pupil fiberfed echelle spectrograph

FiberExit-FNoptics-Slicer

Single-piece Collimator (3passes)

R4 Echelle grating

Grism crossdisperser

Dioptric camera

Spectrograph and Vacuum Tank Layout

Figure 2. General view of the CARMENES NIR Optical Bench fully assembled.

Calibration: Wavelength reference

• Hollow cathode lamps: Thorium-Argon-Neon for daily and master calibrations.

Comparison of Th/Ar, U/Ar and U/Ne Lamps

Redman et al. 2011

Requirements for RV precision

Stable slit illumination and instrument are required for high RV precision.

- Highly stable injection of light in the fibre (guiding ~0.1")
- Image scrambler or octagonal fiber

Point Spread Function shift

Avila & Singh (2008)

The CARMENES Consortium

- Landessternwarte Königstuhl, U Heidelberg, Germany
- Insitut für Astrophysik, U Göttingen, Germany
- MPI für Astronomie, Heidelberg, Germany
- Thüringer Landessternwarte, Tautenburg, Germany
- Hamburger Sternwarte, U Hamburg, Germany
- Instituto de Astrofísica de Andalucía, Granada, Spain
- Universidad Complutense de Madrid, Madrid, Spain
- Institut de Ciències de l'Espai, Barcelona, Spain
- Instituto de Astrofísica de Canarias, Tenerife, Spain
- Centro de Astrobiología, Madrid, Spain
- Centro Astronómico Hispano-Alemán

Time Line

Official Start 11/2010 Preliminary Design to 07/2011 07/2011 - 11/2012Final Design Construction 11/2012 - 12/2013Commissioning 01/2014 - 03/201404/2014 - 12/2018Data Taking