Understanding the structure of the transition disk HD 135344B by radiative-transfer modeling of multi-instrument gas and dust observations.

Andrés Carmona (IPAG, Grenoble)

C. Pinte (Grenoble), W.F. Thi (Grenoble), M. Benisty (Grenoble), F. Ménard (Grenoble), J. Olofsson (MPIA), G. van der Plas (Santiago) + GASPS

Transition Disk: Herbig F4Ve, 2 Msun, 140pc

Spatially resolved sub-mm observations (cold dust)

Rin ~ 40 AU; i = 21°; Rdisk>120 AU; PA=55° Brown et al. 2009; Andrews et al. (2011)

Scattered light imaging: Spiral arms + Dust inside the Gap!!

Muto et al. 2012 (H-band) scattered light **down to ~28 AU**

CO 4.7 micron spectro-astrometry (Pontoppidan et al. 2008)

warm gas "inside the gap"

Rout > 15 AU !!!

Observational Data Sets

Dust diagnostics

- Dust scattering imaging [1,2]
- Spitzer IRS spectrum [3] No silicate feature, weak 11.2 micron PAH
- mid-IR Q-band imaging [4]
- sub-mm interferometry [5]
- mm interferometry [6]
- near-IR interferometry from
 PIONIER [7]
- Herschel-PACS continuum [8]

Gas diagnostics

- H₂ near and mid-IR upper limits [9,10]
- Spectroastrometry of CO 4.7 μm emission [11]
- Herschel [OI] 63 μm emission [8]
- CO 866 µm emission
 [12]
- High res. spectra of the [OI] 6300 Å line [13]

References : [1] Muto et al. 2012; [2] Grady et al. (2009) ; [3] Brown et al. 2007; [4] Pantin et al. (in prep); [5] Brown et al. 2009; [6] Lyo et al. 2011; [7] Benisty et al. In prep; [8] Meeus et al. (in prep), [9,10] Carmona et al. 2008, 2011; [11] Pontopiddan et al. (2008); [12] Dent 2005; [13] van der Plas (2008);

Methodology

"free" parameters

Geometry

Dust Properties

Flaring exponent Rin Rout edge surface density exponent H/R scale height

Silicates (+ Carbon?) amin amax exponent = -3.5 (?) Heating: Rad. Eq. + LTE PAH = Non. Rad. E T < 1500 K

Methodology

Step I Assume only Silicates

Solution: Narrow Ring

	[0]]	CO 13-2	$CO_{V} = 1_{-}O_{-}P(10)$	$H_{2} = 1 - 0S(1)$	$H_{2} 0_{-} 0S(1)$
	$63 \mu \mathrm{m}$	866 μm	$4.7545 \mu \text{m}$	$2.12 \ \mu m$	$17.03 \mu m$
	(1)	(2)	(3)	(4)	(5)
Observed	4.6E-17	1.2E-19	1.4E-17	<1.6E-17	< 1.0E-17
Model 46	5.7E-17	1.7E-19	4.7E-17	9.0E-20	7.7E-19

Line Fluxes OK

SED OK:

Large silicates >10 µm
Large PAH (NC > 100)

Cold gas

CO 866 µm

Op. thick emission: larger disk → higher CO 3-2 fluxes Surface Density → Rout constraint

[OI] 63.18 µm

higher inner disk scale height → lower [OI] fluxes larger PAH size → lower [OI] fluxes

CO 4.7 µm

The CO 4.7 μm emission is produced in the inner disk at a fraction of AU. **Crucial parameters** edge of the inner disk extend of the inner disk

Naturally the expected CO 4.7 micron line profile does not fit !

A flat disk

Does not work the inner ring gets most of the radiation and dominates the emission

Flaring Disk?

does not work neither

The Wall is the problem!

if we want to describe the CO 4.7 micron emission this model needs to be abandon

a disk with dust 100% silicates does not make it (we tried settling does not help neither)

Step II Add Carbon to the Mix Idea I: Uniform Mixture Carbon + Silicates

inner disk:

25% carbon 75% silicate (dust: 2X10⁻¹⁰ Msun)

0.18 < R < 20 AU

25 % Carbon : Emission from the outer disk

	[OI]	CO J3-2	CO $v = 1 - 0 P(10)$	H_2 1-0S(1)	$H_2 0-0S(1)$
	63 µm	866 µm	4.7545 μm	$2.12 \mu{ m m}$	17.03µm
	(1)	(2)	(3)	(4)	(5)
Observed	4.6E-17	1.2E-19	1.5E-17	<1.6E-17	< 1.0E-17
carbon3	7.0E-17	1.7E-19	5.1E-18 🔨	2.5E-19	4.3E-19

Too faint !

5% carbon 8x10⁻¹⁰ Msun

Less extended carbon allows for larger masses

	[OI]	CO J3-2	CO $v = 1-0 P(10)$
	63 µm	866 µm	4.7545 μm
	(1)	(2)	(3)
Observed	4.6E-17	1.2E-19	1.5E-17
model carbon 13	9.2E-17	1.8E-19	1.0E-17

near-IR emission: dominated by the carbon dust emission in the inner disk we have large freedom choosing the dust in the extended inner disk

0.2-0.25 AU

ldea II

Just put the Carbon in the inner-most disk

Large Silicates at R< 20-40 AU

it works ! I. Gas surface density must be flat

Do you fit the sub-mm images?

Not an issue, emission of the inner disk is below SMA sensitivity

0.2 < R < 25 AU

Dust 0.01 - 10 micron g/d =10000 flux too low

Dust 10 - 1000 micron g/d =1000 flux OK

Dust 100 - 1000 micron g/d =100 flux OK

degeneracy Dust Size, g/d, disk size

How we will know? Spatially resolved observations: ALMA + EVLA

- 1000

The slit effect is important

Interplay GAS and DUST diagnostics is crucial to break degeneracies of the modeling process

