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Detecting exoplanets by AO

Main issue:




Detecting exoplanets by AO

Main issue:

Need to remoe the central star !



Exoplanet atmospheres

= Some information from transmission spectra of
transiting irradiated hot-Jupiters.

= Some photometric information on HR8799 late L to
early T planets. Low resolution spectra of 2M1207,
Ldwarf and HR8799b.

— SPHERE should discover 1-5Muiuwp T-Type exoplanets
but models are not tested in this range.

What will SPHERE exoplanets’ atmospheres look like?

Perhaps we have an answer now!



CFBDS:a wide field survey for

brown dwarfs at CFHT

=> 800 square degrees in i' and z', up to z'=22.5 in 5mn exposure time
=> more than 30 000 000 astrophysical sources.
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Atypical red colours
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CFBDSIR2149 against known brown dwarfs



Compare with field brown
dwarfs

Comparison with a T8 BD
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Flux(F,)

A low gravity object ?

CFBDSIR2149_Vs_lte008—-5.0—-0.0.BT CFBDSIR2149_Vs_lte0065—3.75-0.0.
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An AB Doradus member

ABDMG Members
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= Bayesian kinematic analysis using 2D proper motion and
weak photometric distance constraints :

= > 87% chance to belong to AB-Doradus (as well as 6%
to Beta Pictoris and 7%the field )

Takes the much higher field star density into account in the
prior.



A free-floating planet?

= Brown dwarf candidate confirmed with a weird photometry.

= X-shooter spectra from 0.8 to 2.5 micron and find low gravity
features. Did we miss other FFP?

= Proper motion much more compatible with AB Doradus than
with the field



What to do with a free-
floating planet ? Step 1 _

= Test planetary evolution and
atmosphere models !

= Get the parallax. Derive the absolute flux. bl
Radius issue?

= Accurate proper motion :confirm whether it belongs to
young moving group. Get the age !

= Check if planetary models are overluminous
<=>Are exoplanet imagers capabilities estimation ok?

= Use spectra, age and absolute luminosity to
understand where models got it wrong.



What to do with a free-

floating planet ? Step 2

= Identify low gravity (planetary-mass) features :

K-band flux enhancement

Potassium doublet (need more SNR !). Others?
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What to do with a free-

floating planet ? Step 3

= Find exoplanets with the same mass/age range with
SPHERE

= Use the high S/N high resolution spectra of
CFBDSIR2149 as a benchmark to understand the

photometry and the low resolution spectra, and
therefore the physics of the exoplanets.




Thanks !

CFBDSIR2149_Vs_lte0065—-3.75




Deriving Teff from models

= Compare your spectra to model spectra and look at

temperature sensitive molecular features.
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Deriving log g from models

= Compare your spectra to model spectra and look at gravity

sensitive molecular features.
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10

i

Too light !

= . W

1 1.5 2

Lqmbdo(micron)



A planetary mass object with

temperature in the liquid-water range

=> Teff=370+/-40K
T dwarf or Y dwarf?

Pressrelease Keck, ESO,CFHT, CNRS, March 2011

Planetary Mass?
6 M if age 1Gyr
14Mj if age 5Gyr
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Cool Atmospheres

¢ 50 T dwarfs NIR spectra

=> A diversity in temperature, metallicity and gravity
¢ Linking stellar and planetary atmospheres physics
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=> Jovian-like features appear between ~500K and 100K.
=> Y dwarfs, missing links between stars and planets.
=> Exoplanets : Low gravity M, L, T, Y spectral types
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