Origin of water on Earth: the clues from pre-planetary phase of the Solar nebula

Dmitry Semenov, Tobias Albertsson, Thomas Henning

Max Planck Institute for Astronomy Heidelberg, Germany

Outline

- Motivation
- New model of deuterium chemistry
- D/H ratio of water during pre-planetary phase
- Conclusions

History of early Earth

• 4.568 Ga: Sun & Solar nebula -100 Myr: Earth accretion, core formation and degassing -112 Myr: Formation of Moon • -150 Myr: first rocks -250-350 Myr: liquid water? -600 Myr: Late Heavy **Bombardment** • -700 Myr: first life

Halliday (2003)

What is the source of water on Earth?

- Outgassing of volatiles by volcanoes
 - But inner Solar nebula was too warm for "wet" planetesimals
- Brought by comets & asteroids from outer region

Origin of water on Earth

- Earth' oceans: $H_2O D/H = 1.56 \times 10^{-4}$
- Carbonaceous asteroids (~ I-3 AU): ~ Earth's value
- Oort-family comets (~5–20 AU): ~ 3–6 x 10⁻⁴
- Jupiter-family comet Hartley-2 (~5–20 AU): Earth's value

Deuterium fractionation

- "Cold" fractionation via H_2D^+ , D_2H^+ , D_3^+ : T ~ 10 40 K
- "Warm" fractionation via CH_2D^+ & C_2HD^+ : up to T ~ 80 K
- Surface processes

Courtesy of H. Roberts

Deuterium chemistry model

Albertsson et al. (2011), astro-ph/1110.2644

- Chemical code "ALCHEMIC" (Semenov et al. 2010)
- Gas-phase reactions: KIDA (Sep 2012)
- Surface reactions (Garrod & Herbst 2006)
- High-temperature gas-phase reactions (Harada et al. 2010)
- Cloning of H-bearing reactions (except of -OH)
- Isotope exchange rates from literature
- 57,000+ reactions & 1,900+ species
- Reproduces observations

Chemo-dynamical model of Solar nebula

- I+ID physics
- M_{sun} , IR_{sun} , $M_{dot} = 10^{-8} M_{sun}/yr$
- alpha-viscosity: $\alpha = 0.01$, diffusion coefficient @ 800 AU: ~10¹⁸ cm²/g

- 2D chemistry with turbulent mixing transport: I Myr
- New deuterium network

• Turbulent mixing does not bring H₂O ice to I AU: fast evaporation & freeze-out << mixing timescale

• Mixing brings HDO in warm regions \Rightarrow partial defractionation in gas & recondensation

Pressure scale height

All together: D/H of water ice

- Cometary D/H of H_2O at 5 20 AU:
 - Laminar model: ~ 5 10⁻³
 - \checkmark Dynamical model: ~ $10^{-4} 2 \ 10^{-3}$
 - D/H of H_2O of Oort-family comets: ~ 10 AU
 - D/H of Earth H_2O : ~ 2.5 6 AU
- Both models show D/H of Earth's water: ~2–3 AU

Conclusions

- New deuterium network
- 2D chemo-dynamical model of Solar nebula
- No icy grains at I AU
- Dynamical processes are important for D/H of cometary water
- Not so for asteroids

• Source of Earth water: comets vs asteroids?

Thank you!

and

DFG Priority Program 1385: "The first 10 million years of the Solar System" (SE 1962/1-1 & 2-1)

Deuterated species in space

- Elemental D/H ratio is ~1.5 10⁻⁵
- ISM, protoplanetary disks, comets:
 D/H ~0.1–50%
- Sensitive to T and freeze-out
- A link between D/H of water on Earth and in comets or asteroids?

Species	D/H
HD	<0.05%
H_2D^+	< 0.3%
N_2D^+	0.5-44%
DCO ⁺	0.1–18%
ND3	0.1–3%
HDO	0.2–7%
HDCO	0.6-170%
D ₂ CO	I-29%
CD₃OH	<1–5%
DCOOCH ₃	<2–15%
DCN	0.8–11%
DNC	0.8–12%